1/49=7^2x

Simple and best practice solution for 1/49=7^2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/49=7^2x equation:



1/49=7^2x
We move all terms to the left:
1/49-(7^2x)=0
We multiply all the terms by the denominator
-7^2x*49+1=0
Wy multiply elements
-343x^2+1=0
a = -343; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-343)·1
Δ = 1372
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1372}=\sqrt{196*7}=\sqrt{196}*\sqrt{7}=14\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{7}}{2*-343}=\frac{0-14\sqrt{7}}{-686} =-\frac{14\sqrt{7}}{-686} =-\frac{\sqrt{7}}{-49} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{7}}{2*-343}=\frac{0+14\sqrt{7}}{-686} =\frac{14\sqrt{7}}{-686} =\frac{\sqrt{7}}{-49} $

See similar equations:

| 7x-13=6x+8 | | 12x-12+4x=180 | | 12x-12=4x | | 3x+16+2x+50=180 | | 7+2*n-6=17 | | a^2+3a+9= | | 3x+52=5x+18 | | 9x-10=6x+1 | | H(x)=4(3×)+3 | | 5x+70=15x | | (3x-70)=40 | | (3x-70)=45 | | f(7)-f(6)=-3.2 | | (3x-70)=35 | | 11x+61=9x+39 | | 9x+39=11x+61 | | 160-y=102 | | 2x+65xx=2 | | 10x-26=7x+7 | | 21=5-4b | | 21=|5-4b| | | -40=7u+9 | | 0=-3g+9 | | f+-84=-72 | | 3((3v-4)=51 | | 3x+4×=105 | | -18=5z=37 | | 55x-220=440 | | -4x-9=55 | | 6/11y+18=48 | | 6/11y18=48 | | q^2−9q+1=2 |

Equations solver categories